Transformation of Cephalosporins: Preparation of a 3-Methyl-3-nitro-4-hydroxyiminocepham

By MALCOLM M. CAMPBELL* and STEPHEN J. RAY[†]

(Department of Chemistry, Heriot-Watt University, Riccarton, Currie, Edinburgh EH14 4AS)

Summary The reaction of N_2O_3 with 3-methyl-7 β -phenoxyacetamidoceph-3-em-4-carboxylic acid gives, by an addition-decarboxylation sequence, 3α -methyl- 3β nitro-4(E)-hydroxyimino- 7β -phenoxyacetamidocepham-4-carboxylic acid.

ANTIBIOTIC activity in cephalosporins (1) and derived molecules almost invariably requires the presence of a C(3)-C(4) double bond. Isomerisation to a 2-cephem (2), in which C-4 becomes sp³ hydridized and the carboxylic acid is α -oriented, results in diminished activity.¹ We have been concerned with a systematic study of functionalization and rearrangement at various points in the penicillin and cephalosporin nuclei,² and within this programme we now describe a new reaction mode leading to a modified cephalosporin in which C-3 is sp³ hybridized and C-4 is sp² hybridized.

The acid $(1, \mathbb{R}^1 = \text{PhOCH}_2, \mathbb{R}^2 = H)$ in dichloromethane was treated at room temperature with an excess of dinitrogen trioxide.³ Following aqueous work-up, the product (4) (67%) was recrystallized from toluene-ethyl acetate to give pale yellow needles, m.p. 154—155 °C, $[\alpha]_D^{22} + 88.5^\circ$ ($c \ 0.02$ in acetone). Analysis indicated the formula $C_{15}H_{16}N_4O_6$, consistent with decarboxylation and addition of N₂O₃. Spectroscopic analysis did not permit an unambiguous structural assignment, and an X-ray crystallographic analysis was therefore undertaken.

(3) (4)

The X-ray analysis⁴ indicated the novel cephalosporin structure (4). Thus the principle spectroscopic characteristics can be therefore assigned as follows: ν_{max} (KBr) 1773 (β -lactam), 1670 (NHCO), and 1565 (NO₂) cm⁻¹; δ [(CD₃)₂SO; 60 Mz] 1.84 (3H, s, Me-3), 3.71 (2H, dd, J 14 Hz, H-2), 4.64 (2H, s, PHOCH₂), 5.34 (1H, d, J 4 Hz, H-6), 5.62 (1H, dd, J 4 and 8 Hz, H-7), 6.8—7.4 (5H, m, Ph),

† Work carried out during tenure of a Pfizer Fellowship: present address Pfizer Central Research, Sandwich, Kent CT13 9NJ.

9.16 (1H, d, J 8 Hz, exch NH), and 12.0 br (1H, s, exch OH) Similar spectroscopic data were obtained for the corresponding 3-acetoxymethyl ceph-3-em derivative

The addition of N₂O₃ may be either ionic or radical³ In one possible reaction pathway an intermediate such as (3) \ddagger may undergo elimination of CO₂ to give the *E*-oxime (4) The addition reaction is noteworthy because of the relative lack of reactivity of the C(3)—C(4) double bond, particularly towards electrophilic reagents ⁵

This new structural type is of interest because (a) an sp² centre has been retained at C-4 and (b) the carboxygroup has been replaced by a hydroxymino-group Studies on further structural modifications of (4) and its 3-acetoxymethyl analogue, which exhibit marginal antibiotic activity against Gram-positive bacteria, are in progress

(Received, 11th March 1980, Com. 269)

This mode of addition would contrast interestingly with other studies which show that reactions of a 4-carbanion, such as methylation and methylsulphenylation, give 4β -adducts owing to control by the N-5 lone pair which is α -oriented, A Yoshida, S Olda, and E Ohki, Chem Pharm Bull, 1975, 23, 2507, 2518

¹ 'Cephalosporins and Penicillins,' ed E H Flynn, Academic Press, New York 1972 p 166 ² M M Campbell and G Johnson, J Chem Soc, Perkin Trans 1, 1975, 1212, D H Bremner, M M Campbell, and G Johnson, *ibid*, 1976, 1918, D H Bremner and M M Campbell, *ibid*, 1977, 2298

³ For a recent summary of N₂O₃ radical chemistry see J Pfab, J Chem Soc, Chem Commun, 1977, 767, and for discussion of ^a For a recent summary of N₂O₃ radical chemistry see J Pfab, J Chem Soc, Chem Commun, 1977, 767, and for discussion of ^a The crystallographic analysis was performed by Dr A Forbes Cameron, University of Glasgow and will be reported separately ^b H Fazakerley, D A Gilbert, G I Gregory, L K Lazenby, and A G Long, J Chem Soc (C), 1967, 1959, P G Sammes, Chem Rev, 1974, 113, A Balsamo, P Crotti, B Macchia, F Macchia, G Nannini, E Dradi, and A Forgione J Org Chem, 1976, **41**, 2150 The slow cycloaddition of diazomethane across C(3)-C(4) has been reported, R A Archer and B S Kitchell, J Org Chem, 1966, **31**, 3409, E R Farkas, E T Gunda, and J C Jaszberenyi, Tetrahedron Lett, 1973, 5127, Acta Chim Acad Sci Humg, 1976, **32**, 205 (addition from the face) Hung, 1974, 83, 205 (addition from the β -face)